JONIKA

Įvadas

T

1. SUPERJONINIŲ KRISTAŲ STRUKTŪROS

1.1.Retoji jonų sanglauda Ag+ superjonikų kristalinėse struktūrose

1.2.Kristalinės Vo", Na+, H+ superjonikų struktūros

1.3.Netvarkios Li+ superjonikų struktūros

2. JONINIS SUPERJONIKŲ LAIDUMAS IR POLIARIZACINIAI REIŠKINIAI

2.1. Taškiniai Frenkelio ir Šotkio defektai superjonikuose.

2.2. Stabilizuojančiųjų Y2O3 priemaišų įtaka elektrinėms ZrO2 keramikų savybėms

3. SUPERJONINIŲ JUNGINIŲ ELEKTRINIŲ SAVYBIŲ TYRIMO METODAI

3.1. Joninio laidumo sando ir dielektrinės skvarbos tyrimo metodai elektriniuose žemojo ir aukštojo dažnių laukuos

3.2. Superjonikų elektrinių savybių tyrimo metodai mikrobangiuose elektriniuose laukuose

4. DINAMINĖS SUPERJONIKŲ SAVYBĖS

4.1.Dielektrinės skvarbos ir elektrinio joninių ir superjoninių kristalų laidumo prieklausų nuo elektrinio lauko dažnio aprašas

4.2. Relaksacinė superjonikų joninio laidumo dispersija

4.3.Relaksacinė ir rezonansinė σ ir ϵ dispersijos Li+ superjonikuose

5. SUPERJONINIŲ JUNGINIŲ TAIKYMAS

Superjoniniai akumuliatoriai .Kuro gardelės Deguonies siurbliai Deguonies dujų jutikliai Anglies monoksido dujų jutikliai Anglies dioksido dujų jutikliai Jonistoriai

Literatūra

1. Tetsuichi Kudo and Kazuo Fueki "Solid StateiIonics", Kadansha, 1990.

2. M.B. Salamon "Physics of Superionic Conductors", Springer-Verlag Berlin Heidelberg, New York, 1979.

3. V. Grivickas, A,F.Orliukas, A. Žindulis, S. Tamulevičius, Medžiagų mokslas, Progretus, Vilnius, 2008.

4. A.F. Orliukas, "Superjoniniai laidininkai", Vilnius, VUL, 2004.

5. V.V.Kharton, "Solid State Electrochemistry I", Fundamentals, Materials and their Applications, Wiley-Vch Verlag GmbH&Co. KGaA, 2009.

6. John O'M. Bockris, Amulys K. N. Reddy, Maria Gambos- Aldeco, Modern Electrochemistry (Fundamentals of electrodics),

(Kluwer academic publishers, New York, Boston, Doldrecht, London, Moscow, 2002).

7. Anthony R. West , Solid State Chemistry and its Applications", John Wiley & Sons Ltd., Reprinted 1990.

8. A.K. Jonscher "Dielectric relaxation in solids", Chelsea Dielectrcs Press, London, 1996.

9. F. A. Karamov, "Superionic Conductors, Cambidge International Science Publishing, 2008.

10. J.Kawamura, S. Yoshikado, T. sakuma, Y. Michihiro, M. Aniya, Y. Ito, "Superionic Conductor Physics", World Scientific, 2007.

Paruošė prof. A.F.Orliukas

Electrochemical devices agree T. Kudo, K. Fueki, SSI, 1990

1833	Faraday's Law
1897	ZrO ₂ glower (Nernst)
1920	High ionic conduction in α-AgI
1933	Diffusion theory of lattice defects
1934	Ion transport mechanism for α -AgI
1943	Ionic conduction theory for ZrO ₂
1962	High temperature fuel cell using ZrO ₂
1967	β -alumina, Rb Ag ₄ I ₅
1969	Electro-chromism in WO ₃
1970	Electric double-layer capacitors (ionistor)
1970	Electrochemical memory devices
1972	Solid state Li battery, memoriode
1976	NASICON secondary battery using TiS ₂ intercalation
1979	High Cu ⁺ conductor Organic polymer solid-electrolyte
1981	Plastic battery
1983	Commercial ECD
Future prospects of SSI Neuron fiber	
Bio-computer system	

In the lattice of α -AgI are d-12, b-6 and h-24 energy positions for diffusion of 2 Ag ions.

a) α -Li₃Fe₂(PO₄)₃ Li⁺ ion map on the (010) plane, b) oxygen window in β phase on the (001) plane, c) γ - Li₃Fe₂(PO₄)₃ Li⁺ ion map on the (010) plane

 \ominus \ominus \ominus \ominus \ominus \ominus Θ (+)+ -(+) (—) Ð (+)+ (_) (+) (_) (+) (+) (+) (+) — (+)+ - + (-) $\ominus \ominus \ominus \ominus \ominus$

Ideal lattice

Point Frenkel –type defects

The energy relief of of ions in the lattice with the point Frenkel –type defects

Point Frenkel - type defect N'-j.tarpmazgiuose; N-j.mazguose; $N_{i} = N_{i}$ $P_1 = \frac{N'!}{(N' - N_{\rm e})(N_{\rm e})}$ $F = N_{F} \cdot G_{F} - T \cdot S$ P₁-j.pasiskirstimo $P_2 = \frac{N!}{(N - N_{\rm P})(N_{\rm P})}$ tikimybe; $G_F = H_F - T \cdot S_F$ P₂-vakansiju pasiskirstymo $S = k \ln P$ $P = P_1 \cdot P_2$ tikimybe; $S = k (\ln P_1 + \ln P_2) = k \ln \left\{ \frac{N'!}{(N' - N_F)!N_F!} \cdot \frac{N!}{(N - N_F)!N_F!} \right\} \quad \begin{array}{l} 1 << N_F << N, N' \\ \ln x! \approx x \ln x - x \end{array}$ $S_{E} = \Delta Q/T; H_{E} = U + pV.$ $k = 1.38 \cdot 10^{-23} J \cdot K^{-1}$ Stirlingo formulė $\ln = \frac{N'!}{(N' - N_F)N_F!} = \ln(N' - N_F) - \ln N_F! =$ $= N' \ln N' - N' - (N' - N_F) \ln (N' - N_F) + (N' - N_F) - N_F \ln N_F + N_F =$ $= N' \ln N' - N' \ln (N' - N_F) + N_F \ln (N' - N_F) - N_F \ln N_F$ N_i-concentration of ions $\ln = \frac{N!}{(N - N_{p})!N_{p}!} = N \ln N - N \ln (N - N_{p}) +$ N_u-concentration of vacancies $+N_F \ln(N-N_F) - N_F \ln N_F; \quad \left(\frac{\partial F}{\partial N}\right) = 0$ $N_{\rm F}$ -concentr.of p.Frenkel def. F-free energy of lattice $\frac{S}{k} = N \ln N - N' \ln N' - 2N_F \ln N_F G_{\rm F}$ -Gibbs energy $-(N'-N_{E})\ln(N'-N_{E})-(N-N_{E})\ln(N-N_{E})$ S-entrophy S= $\delta Q/T$ $-\frac{G_F}{L_T} = 2\ln N_F - \ln(N - N_F) - \ln(N' - N_F)$ $H_{\rm F}$ -enthalpy H=TS+pV $N_F = << N, N'$ $N_F^2 = (N - N_F)(N' - N_F) \exp\left(-\frac{G_F}{kT}\right)$ P_1, P_2 -probabilities $N_F^2 = NN' \exp\left(-\frac{G_F}{kT}\right)$ $N_F = \sqrt{NN'} \exp\left(-\frac{G_F}{2kT}\right)$

 $\ominus \oplus \ominus \oplus \ominus \oplus$ $\bigoplus \ominus \oplus \ominus \oplus \ominus \ominus$ $\oplus \bigcirc \oplus \bigcirc \oplus \bigcirc \bigcirc$ $\ominus \oplus \oplus$ (+) (-)____ $\ominus \oplus \ominus \oplus \ominus \oplus \oplus$

Point Schottky-type defects

Point Schottky-type defect

$$F = N_{\underline{s}} \cdot G_{\underline{s}} - T \cdot S$$
$$G_{\underline{s}} = H_{\underline{s}} - T \cdot S_{\underline{s}}$$

$$P = \frac{N'!}{(N - N_s)N_s!}$$

$$S_s = k \ln P = k \ln \frac{N!}{(N - N_s)N_s!}$$

$$G_{\tilde{S}} = T \frac{\partial S_{\tilde{S}}}{\partial N_{\tilde{S}}}$$
$$\frac{\partial S_{\tilde{S}}}{\partial N_{\tilde{S}}} = k \ln \frac{N_{\tilde{S}}}{N_{\tilde{S}}}$$

$$\frac{G_{\check{S}}}{k \cdot T} = \ln \frac{N}{N_{\check{S}}}$$
$$N_{\check{S}} = N \exp\left(-\frac{G_{\check{S}}}{k \cdot T}\right)$$

F-free energy of the lattice N_{s} -concentr. of p.Schottky defects N-concentration of the ions inttice T-temperature P-probability G_{s} -Gibbs energy

The substitution of M³⁺ and M²⁺ ions in LiTi₂(PO₄)₃ solid electrolytes

The values of the ionic radius are: $Ti^{4+}=0.6$, $Sc^{3+}=0.81$, $Fe^{3+}=0.76$, $Y^{3+}=0.93$, $Al^{3+}=0.5$, $Ge^{4+}=0.53$, $Cr^{3+}=0.69$, $Mg^{2+}=0.65$ Å.

The compounds at room temperature belongs to the rhobohedral symmetry (.S.G. R3c) Z=6

The substitution $Ti^{4+} \rightarrow M^{3+} + Li^{+}$ realize in the compounds Li _1+xM xTi _2-x(PO _4) _3 Where M = Sc, AI, Fe, Y, La, x= 0.3.

The substitution $Ge^{4+} \longrightarrow M^{3+} + Li^+$ realize in the compounds Li _1+xGe _2-xM _x (PO _4) _3 Where $M_x = Al_{0.5}$, $Cr_{0.3}$.

The substitution $Ti^4 \longrightarrow M^{2+} + 2Li^+$ realize in the compounds Li _{1+2x}M _xTi _{2-x}(PO _4) _3 Where $M_x = Mg_{0.3}$. Synthesis conditions of the

 $Li_{1+x}M_xTi_{2-x}(PO_4)_3$ (where M=Sc, Al, Fe, Y; x=0.3) compounds by a solid phase reaction

In 1938, Stefan Brunauer, Hugh Emmett and Edward Teller published an article about the BET theory in a journal for the first time; "BET" consists of the first initials of their family names. [BET (m^2/g)].

YSZ, GDC, SDC composition, S_{BET} of the powder theoretical and relative densities of the ceramics.

Composition	S _{BET} , m ² /g	$D_{theoretical}$ g/cm ³	<i>d</i> , %
Gd _{0.2} Ce _{0.8} O _{1.9}	220	7.24[3]	95.0
Sm _{0.2} Ce _{0.8} O _{1.9}	212	7.15[1]	94.0
$Sm_{0.15}Ce_{0.85}O_{2-\delta}$	195	7.22[5]	94.0
Sm _{0.15} Ce _{0.85} O _{1.925}	203	-	94.0
Sm _{0.15} Ce _{0.85} O _{1.925}	8	-	92.0
Gd _{0.1} Ce _{0.9} O _{1.95}	6.44	7.21[2]	97.0
$Gd_{0.1}Ce_{0.9}O_{2-\delta}$	201	-	95.0
92 mol% ZrO₂ 8 mol%Y₂O₃	1.67	5.96[4]	97.0
92 mol% ZrO₂ 8 mol%Y₂O₃	12.4	-	95.0

H.B.Li et al.Acta Mater.54(2006)721;
 K.Huang et al.J.Amer.Ceram.Soc.81(1998)357;
 G.Chiadeli et al.Sol.State loncs, 176(2005)1505;
 H.Liu et al.Mat. And Design, 31(2010)2972;
 C.Jiang et al. Power Sources, 165(2007)134.

SEM images of $Ce_{0.9}Gd_{0.1}O_{1.95}$ ceramics sintered from powder with $S_{BET} = 158.03 \text{ m}^2/\text{g}$ (a) and $S_{BET} = 6.44 \text{ m}^2/\text{g}$ (b)

Vektrinės diag-ra-mos: sro-vių, Lygiagrečios RC grandinės atveju

$$tg\delta = \frac{\dot{j}_a}{\dot{j}_r} = \frac{\varepsilon''}{\varepsilon'} = \frac{1}{\omega RC},$$

$$\varepsilon'' = \frac{\sigma}{\varepsilon_0 \omega} + \frac{\left(\varepsilon'_m - \varepsilon'_{j\infty}\right)\omega\tau'}{1 + \left(\omega\tau'\right)^2}$$

$$\varepsilon' = \varepsilon'_{j\infty} + \frac{\varepsilon'_m - \varepsilon'_{j\infty}}{1 + (\omega \tau')^2}.$$

Pastarosios lygtys yra vadinamos Debajaus lygtimis. Joniniuose ir superjoniniuose kristaluose, kuriuose dominuoja vienarūšiai joniniai migrato-riai, turintys tą patį relaksacijos laiką

Temperature dependences of the relaxation frequency of the YSZ thin films deposited on alloy-600 substrate The frequency of the relaxation dispersion increase with temperature according to formula

$$f_b = f_0 \exp\left(-\frac{\Delta E_f}{kT}\right),$$

where f_0 is frequency related to the lattice vibration. The ionic conductivity of the bulk is the product of the volume concentration of mobile Li^+ ions N, their electric mobility μ and the electric charge q:

$$\sigma_b = \mu N q \, .$$

$$\sigma_{b} = \left[N_{0} \exp\left(-\frac{\Delta E_{N}}{kT}\right) \right] \cdot \left[\frac{C}{kT} \exp\left(-\frac{\Delta E_{\mu}}{kT}\right) \right] q$$

 $\Delta E_N + \Delta E_\mu = \Delta E_b \,. \label{eq:expansion}$

According to the Nernst-Einstain relation, the diffusion coefficient of mobile

ions
$$D = \frac{\mu kT}{q}$$
 and

exponentially increase with temperature according formula $D = D_0 \exp(-\Delta E_D / kT)$.

That means that the activation energy of Li^+ ion diffusion ΔE_D and migration ΔE_u should be equal

$$\Delta E_D = \Delta E_\mu.$$

According to model of thermally activated ion jumps, which is realized in solid electrolytes, the lattice diffusion coefficient of mobile ions are related to the mean jump frequency ω_i by the expression:

$$D = \chi \gamma l^2 \omega_j,$$

where $\omega_j = 2\pi f_b$ is the angular frequency, $\chi = 1/4$ is the geometric factor for twodimensional conductivity path in the rhombohedral site symmetry, l^2 is the mean square jump and γ is the correlation factor, which depends on the definition and probability population of jump vectors. Since we have found that the activation energy the σ_b of the materials is equal to the activation energy of the f_b , which can be attributed to the migration of Li⁺ ions in the bulk of the ceramic samples, the concentration of charge carriers remains constant with temperature.

CO₂ dujų jutiklio struktūrinė schema

CO2 dujų jutiklio E-P-T charakteristikos

Kietojo elektrolito kuro gardelės struktūrinė schema

JAV SOFC PROGRAMOJE DIRBA:

 NACIONALINIS KOMERCINIS STANDARTŲ IR TECHNOLOGIJŲ DEPARTAMENTAS
 FEDERALINIS ENERGETIKOS TECHNOLOGIJŲ CENTRAS
 GYNYBOS DEPARTAMENTAS
 DUJŲ TYRIMO INSTITUTAS
 ELEKTRINIŲ IŠTEKLIŲ TYRIMO INSTITUTAS
 BERKLIO LAWRENCO LABORATORIJA
 KALIFORNIJOS UNIVERSITETAS

VISŲ MINĖTŲJŲ ORGANIZACIJŲ ŠIUOS DARBUS FINANSUOJA:

CERAMATEC
 ZTEK
 TECHNOLOGIJŲ VALDYBOS
 GIMININGŲJŲ SIGNALŲ AEROVISATOS KORPORACIJA

AUSTRALIJOJE SOFC GAMINAMI KERAMIKINIŲ KURO GARDELIŲ LABORATORIJOJE EUROPOJE: DIRBAMA ŠVEICARIJOJE, ANGLIJOJE, VOKIETIJOJE, PRANCŪZIJOJE, DANIJOJE

State-of-the-art SOFC

Unfortunately, the dominant SOFC developers aim at stationary applications. Such ceramic solutions are indeed heavy, sluggish, expensive and fragile and must be operated at high temperatures. But totally different SOFCs are presently developed for mobile applications. The following results, **Table 1**, have recently been presented:

Feature	Value	References
Rower density at 800°C	1.935 W / cm ²	Berkeley Lawrence Lab. (2)
Stack power per volume	over 1 kW/L	Allied-Signal Aerospace (3)
Stack power per wording	over 1 kW / kg	Allied-Signal Aerospace (3)
Marmun: to 800°C	1 minute	Keele University (4)
or to operating temperature"	5 seconds	Keele University (5)
Cast down 1000 to 800°C	31 hours	Univ. of California (6)

Table 1 Recent results reported by distinguished SOFC laboratories

Although these results come from different laboratories, they illustrate the potentials of advanced SOFC technology: planar, hybrid (metal-ceramic), bipolar designs with thin (5 to 10 μ m) supported ceramic electrolytes and operating temperatures between 650°C and 800°C. Such light weight, compact SOFCs are under development for automotive applications. Table 2 documents what can be expected in the near future:

Features	Projections
Operating temperature	(550°C) 600°C to 800°C
Start-up (ambient to operating temp.)	less than 2 minutes
Stack power per volume	2 KW/L
Stack power per mass.	2 kW / kg
Fuel	unleaded gasoline, diesel, Methanol
Poforming	integrated internal and in situ
Ceoling	air, heat rejection by exhaust
Duty lifetime	5,000 hours

Cilindrinės formos SOFC modulis

U, V

Storasluoksnio SOFC U - j - W charakteristikos

5kW SOFC modulis pagal S.P.S. Badwal ir K. Foger

SOFC W – I charakteristika 1203 K temperatūroje

		Electronic conductivity (S/m)		Ionic conductivity (S/m)	Thermal expansion coefficient (10 ⁻⁶ .K ⁻¹) (R.T900°C)
	950°C	900°C	800°C		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Lao 85Sro. 15MnO3	1.4×10^4	1.4×10^4	1.4x10 ⁴	10 ⁻⁵ (900°C) [12]	11.7
InO _{1.5} - 30mol%ZrO ₂	1.2x10 ⁴	1.1x10 ⁴	1.0x10 ⁴	1(900°C) [20,21]	10.1 [17]
InO _{1.5} - 5mol%SnO ₂	5.4x10 ⁴	5.3x10 ⁴	5.4x10 ⁴	5x10 ⁻¹ (723°C) [18,22]	9 [23]
La _{0.5} Sr _{0.5} CoO ₃	3.4x10 ⁴	3.8x10 ⁴	4.4x10 ⁴ 4.7x10 ⁴ [5]	8x10 ¹ (900°C) [12] (La0.6Sr0.4CoO ₃)	22.0
Lao 3Sro 7CoO3	-	-	4x10 ⁴ [5]		15.6 .
La0.7Sr0.3CoO3	-	-	3x10 ⁴ [5]		18.3
Lao 3Sr0 2C00.8Fc0.2O3-8	-	2x10 ⁴ [24]	2x10 ⁴ [24]	1x10 ¹ (800°C) [24]	18.4
La _{0.2} Sr _{0.8} C _{00.8} Fc _{0.2} O _{3-δ}	5.6x10 ³	6.3x10 ³	8.1x10 ³ 1.5x10 ⁴ [24]	1x10 ³ (800°C) [16] 1x10 ² (800°C) [24]	24.0
ZrO2-8mol%Y2O3	-	-	-	11.5 (950°C) 8.57 (900°C) 3.75 (800°C)	10.5 [17]

Anodes Ni/YSZ

I	able 2:	In-plain	resistivity	of cathode	layers	$(\Omega)^{(a)}$	Contraction of the local distribution of the
		and the second se					

	Co-sintering temperature			
Materials (cathode thickness#)	1000°C	1100°C	1200°C	
Lao 85Sro 15MnO3 (50µm)	5000	2000	500	
90InO _{1.5} -10mol%%ZrO ₂ (50μm) /70InO _{1.5} -30mol%%ZrO ₂ (15μm)	•	-	20 (co-sintered at 1375°C)	
Lao 55ro 5CoO3 (50µm)	600	60	30	
La _{0.5} Sr _{0.5} CoO ₃ (15µm) /La _{0.5} Sr _{0.5} Mn _{0.5} Co _{0.5} O ₃ (15µm) /La _{0.85} Sr _{0.15} MnO ₃ (15µm)		10000	• *	
La _{0.5} Sr _{0.5} CoO ₃ (50µm) /LSC+8Y-ZrO ₂ layer (15µm)	8000	60000	4000000,	

@2-wire method, point contact with a distance of 2.7 mm #Cathode thickness before sintering are given.

Example of manufacturing process description.

			Allowable Install	ed Cost ¹ (\$/kW)
	Market Segment	Typical Capacity	Entry ²	Sustained ²
	Commercial Cogeneration	50 kW - 2 MW	\$1,500 - 2,000	\$800 - 1,300
n-site	Industrial Cogeneration	5 - 200 MW	\$1,000 - 1,200	\$800 - 1,000
0	Residential Power	0.5 - 10 kW	\$1,000 - 2,500	\$800 - 1,000
ity	Distributed Power	5 - 20 MW	\$1,300 - 1,500	\$800 - 1,300
Uul	Central Station -	100 - 500 MW	\$900 - 1,100	\$700 - 900

¹ Total installed system costs, including all owners costs. Targets apply widely to industrialized country markets. Costs have been calculate on a range of electricity and gas rate structures. Allowable costs for hydrogen fueled systems would be considerably lower as merchant h prices are hybically 2-3 times as high as natural gas.
² "Entry" costs are based on early high value markets. "Sustained" costs must be realized to achieve significant market penetration. ed based

Summary characterization of potential stationary power markets

Chronology of Solid Electrolyte Cells

Date	Electrolyte	Log (S/cm)	Typical Cell System
1950-60	AgI	-5	Ag/V205
1960-65	Ag ₃ SI	-2	Ag/In
1965-72	RbAg4I5	-0.5	Ag/MeaNIs
1965-75	Beta-alumina	-1.5	Na-Hg/I2 PC
1970-75	LiI(Al ₂ O ₃)	-5	Li/PhI2
1970-80	LiI	-7	Li/Io
1978-85	LIX-PEO ^b	-7	Li/V2O5
1980-86	Lio.36I0.14O0.007P0.11S0.38	-3.3	Li/TiSo
1983-87	MEEPC	-4	Li/TiS2
1985-92	Plasticized SPEd	-3	Li/VcO12
1985-92	Lia 3510 1200 31 Po 1250 000	-47	Littica
1990-92	Li _{0.39} N _{0.020} O _{0.47} P _{0.12}	-5.6	Li/a-V2O5

PEO-Polyetylene oxide MEEP-Methoxyethyoxyetyoxy polyphosphazene SPE - Solid polymer electrolyte

CHEMICAL REACTIONS IN SSB

Anodic reaction:

*

$$N_{a} \leftrightarrow N_{a}^{*} + e^{-}$$

$$2 \text{ Li} \leftrightarrow 2 \text{ Li}^{+} + 2 e^{-}$$
or $Li^{+} + e^{-} \leftrightarrow Li$
Cathodic reaction:

$$N_{a}^{*} + \frac{x}{2} s + e^{-} \leftrightarrow \frac{1}{2} N_{a_{2}} S_{x} , kai \times \leq 3$$

$$2 \text{ Li}^{+} + 2 e^{-} + I_{2} \leftrightarrow 2 \text{ LiI}$$
or $Li^{-}C_{0}^{*} O_{2} \leftrightarrow C_{0}^{+} O_{2} + Li^{+} e^{-}$
Total reaction:

 $2 Li + I_2 \leftrightarrow 2 Lil$

The chemical reactions in the Na/S superionic batteries:

 $2Na + 5S \rightarrow Na_2S_5 - Voltage 2.08 V \simeq 2.1V$ $2Na + 4 Na_2S_5 \rightarrow 5 Na_2S_4 - Voltage 1.97 V$ $2Na + 3 Na_2S_4 \rightarrow 4 Na_2S_3 - Voltage 1.81 V$

The chemical reactions in the Ni-MH cell

 $Ni(OH)_{2} \leftrightarrow H_{x} + Ni(OOH)$ $LaNi_{5} + H_{x} \leftrightarrow LaNi_{5}H_{x}$

Plakščiojo kondensatoriaus talpa 5 $C = \frac{\varepsilon \varepsilon_0 S}{\delta}$ 5'20 Rutulio telpa c = 4TT E'EOR Cilindrinio kondensatorious talpa $C = \frac{2\pi \mathcal{E}' \mathcal{E}_0 \mathcal{L}}{\mathcal{L}_n \left(\frac{\mathcal{R}_2}{\mathcal{P}}\right)}$ Sperinio kondensatoriaus talpa $C = 4\pi \mathcal{E} \hat{\mathcal{E}} \circ \frac{\mathcal{R}_1 \mathcal{R}_2}{\mathcal{R}_1 \mathcal{R}_1}$

